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Abstract. The modulation of a one-dimensional weakly non-linear purely dispersive quasi- 
monochromatic wave (the carrier) is usually governed by the non-linear Schrodinger ( N S )  

equation. The critical wavenumber for which the camer is marginally modulationally 
unstable is determined by the condition that the product of the coefficients of the non-linear 
and dispersive terms in the NS equation is zero. However, near this marginal state the 
assumptions that lead to the NS equation are invalid and a modified form of the NS equation 
that involves higher-order non-linearities is appropriate. This modified NS equation is here 
derived formally for a general system involving a single dependent variable and a revised 
form of the instability criterion is obtained. The results are illustrated by considering a 
particular system described by a generalised Korteweg-de Vries equation. 

1. Introduction 

The amplitude modulation of a one-dimensional weakly non-linear quasi-monochro- 
matic purely dispersive wave (the carrier wave) may usually be described by the 
non-linear Schrodinger ( NS) equation 

where r2= ~ ' t ,  6, = E ( X -  V,t), x and t are space and time coordinates respectively, E 

is a small parameter, 4, V, and k, are the complex amplitude, group velocity and 
wavenumber of the carrier wave, respectively, and p = f d V,/dk, and q are real functions 
of k, .  The NS equation has been derived for many physical systems using various 
perturbation techniques such as the Krylov-Bogoliubov-Mitropolsky ( KEM) method, 
the reductive perturbation method, and the derivative expansion method. Jeffrey and 
Kawahara (1982) give a representative selection of references. 

The NS equation has a plane wave solution of constant amplitude that is 
unstable if 

P 4 < 0 .  (1.2) 
It follows that (1.2) is the condition for the modulational instability of the carrier 
wave. The instability is due to a non-linear resonance mechanism in which side-band 
perturbations to the carrier wave reinforce the harmonics of the carrier (Benjamin and 
Feir 1967). 

If p q  has no real zero then the carrier is either modulationally stable or unstable 
for all wavenumbers according to whether p q  > 0 or p q  < 0 respectively. For many 
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physical systems p q  has just one real zero, at some critical wavenumber k, ,  and 
furthermore p q  - k,-  k ,  for ko near k,. The condition (1.2) may then be written as 
k,< k ,  or k,> k ,  depending on whether p q  is increasing or decreasing at ko = k , .  It 
appears then that the carrier wave is marginally modulationally unstable at ko = k , .  

In the present notation the side-bands have a width of O ( E )  and lead to the 
dispersive term involving p in (1.1). The NS equation is derived by balancing the effects 
of weak non-linearity and small side-band width. In order to do  this it is usually 
assumed that the non-linearity is also of O ( E ) ;  this then leads to (1.1) with the 
coefficients p and q, in the dispersive and non-linear terms respectively, both of O( 1). 

In this paper we shall assume that p ( k , )  # 0 and moreover that p (  k , )  is of O( l ) ,  
so that when ko is near k , ,  q is small. Thus an inconsistency must arise in any attempt 
to achieve the aforementioned balance and consequently the NS equation is not 
appropriate near the marginal state. Kakutani and Michihiro (1983) argued that, near 
the marginal state, a different ordering should be used to intensify the effects of the 
non-linearity; this leads to a new governing equation for 4 to replace the NS equation, 
and to a revised modulational instability criterion to replace (1.2). To illustrate this 
argument Kakutani and Michihiro considered the modulation of Stokes waves (i.e. 
gravity waves on water of uniform depth) near the marginal state. They intensified 
the effect of the non-linearity by assuming that the non-linearity is of 0(e1’*) instead 
of O ( E ) ;  by this means they derived a governing equation for 4 of the form 

(1.3) 

where q l ,  q 2 ,  q3 ,  q4 are real functions of the wavenumber k, ,  which is assumed to be 
such that k o - k ,  is of O ( E ) .  We shall refer to (1.3) as the modified non-linear 
Schrodinger ( MNS)  equation. Kakutani and Michihiro also derived a revised modula- 
tional instability criterion of the form 

P41- r<O (1 94) 
where r depends on ko and the amplitude and bandwidth of the carrier wave. In effect 
(1.4) shows that the correct critical wavenumber for marginal modulational instability 
is slightly different from k, .  

The modulation of Stokes waves has also been considered by Johnson (1977). He 
obtained an equation slightly different from (1.3) and a corresponding modulational 
instability criterion. 

The NS equation can be derived in a purely formal way without reference to a 
particular physical system (see Jeffrey and Kawahara 1982, 0 3.2.1, for example). In 
0 2 we show how to derive the MNS equation in a similar way using the derivative 
expansion procedure (Kawahara 1973). In § 3 we derive (1.4) using a method different 
from the one used by Kakutani and Michihiro (1983). In 00 4 and 5 we consider, as 
an example, a system described by a mixed Korteweg-de Vries ( K d v )  and modified 
Kdv equation. In $ 4  the NS equation and the modulational instability criterion are 
derived on the assumption that k,  is not near k , .  In § 5 we consider the marginal state 
and derive the M N S  equation and the revised modulational instability criterion. 

2. A formal derivation of the modified non-linear Schrodinger equation 

In this section we show that the M N S  equation can be derived formally for any non-linear 
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dispersive system in which a single dependent variable U satisfies an equation of the form 

L - - u = N ( u )  ( aat 9 sax> 
where L is a linear operator involving the differential operators a lar  and a l a x  and 
N (  U )  represents all the non-linear terms. 

First consider the linearised problem 

Lu = 0. (2.2) 

U = A. exp[i( kx - ut)]  (2 .3)  

Suppose we require a uniform monochromatic wavetrain solution to (2.2) of the form 

where w is the angular frequency and A. is a non-zero complex constant. Insertion 
of (2.3) into (2.2) gives 

L( -iw, i k ) u  = 0 

from which it follows that 

D( w, k ) A o  = 0 

D ( w ,  k) = 0 

(2.4) 

where D is a real function of w and k. As A. # 0 

and this is the linear dispersion relation which, for a purely dispersive system, is 
satisfied by real values of w and k. A general solution of (2.2) is just a superposition 
of solutions like (2.3). In particular the solution to the linearised problem that represents 
a slowly modulated wavetrain with most of the energy in wavenumbers near to some 
constant value ko is the quasi-monochromatic plane wave 

U = A exp[i( kox - wet)] ( 2 . 5 )  

where wo = w (  k,) is determined from the linear dispersion relation and A is a slowly 
varying function of x, t (see Jeffrey and Kawahara 1982, § 3.2.1, for example). 

Our aim is to derive a governing equation for A. We obtain this by first seeking 
an appropriate generalisation of (2.4). In order to distinguish between the fast oscilla- 
tions of the wavetrain (2.5) and the slow modulations we may use the derivative 
expansion procedure (Kawahara 1973). We introduce the extended set of independent 
variables 

t ,  = E l t  xi = E I X  ( i = O ,  1 , 2 , ,  .., N )  

where E is a small parameter characterising the slow modulation. Only those variables 
with i = 0 , 1 , 2  occur in the equations in this paper, so it is sufficient to take N = 2.  
Had we wished to work to higher order we would have needed further variables. Thus 
defined t o ,  xo are the variables appropriate to ‘fast’ variations and t ,  , x l ,  t 2 ,  x2 are the 
‘slow’ variables. The differential operators can now be expressed as the derivative 
expansions 

a -  a a  a a a a a 
a t  ae  a t ,  at2 ax a e  a x ,  ax2 

- ko - + E -+ E’ - -wo -+ E -+ E 2  - -- - 

where 8 = koxo- moto is, to lowest order, the phase of the fast oscillations of the 
wavetrain. 
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We now assume that the appropriate generalisation of (2.4) that takes into account 
both modulation and non-linear effects is 

a a a . a  
D( at,  a t2  ax, ax2 

wo+iE-+iE2--, ko-iE--iEG-, IAl 

corresponding to a solution U = A e” and a non-linear dispersion relation 
D( w, k, [AI2) = 0. (2.7) 

First suppose that the non-linearity is of O( E),  so that we may write A = ~ 4 .  We 
expand (2.6) in a Taylor series about ( w o ,  ko, 0). At the lowest order, namely O(E),  
we obtain the linear dispersion relation 

D( 0 0 ,  ko, 0) = 0. (2.8) 
Noting that the dispersion relations (2.8) and (2.7) may be rearranged to give 

wo = wo( k,) and w = o( k, IAI’), respectively, we may derive the relationships 

(2.10) 
where ( )o denotes evaluation at o = w o ,  k = ko, /A / ’=  0. 

It is convenient at this stage to introduce new slow variables 
r, = 1, t, = xi - v,t, ( i = 1 , 2 )  

corresponding to a reference frame moving with velocity V,. 
Substituting these new variables into (2.6) we obtain at O(E’ )  

a 4 / a T ,  = 0 (2.11) 
where we have used (2.9). Making use of (2.10) and (2.11), we obtain at O ( E ~ )  the 
NS equation (1.1) with q given by 

(2.12) 

An explicit expression for q can be obtained only with knowledge of the non-linear 
dispersion relation (2.7), and this in turn depends on the structure of the non-linear 
term N ( u )  in (2.1). 

In deriving (1.1) at O ( E ~ )  from the expansion of (2.6) we have implicitly assumed 
that q is of O(1). However, as pointed out in 0 1, if ko is near k, then q is in fact very 
small and (1.1) is not the appropriate governing equation. In this case to balance the 
non-linear and side-band effects in the expansion of (2.6) we intensify the effect of 
the non-linearity by writing A = ~ ‘ ’ ~ 4 ,  and assume that q = &ql for ko near k,, where 
q1 is of O(1) and q is given by (2.12). At O ( E ’ ” )  and O ( E ~ ’ ~ )  we again obtain (2.8) 
and (2.11), respectively. At O(E”’) we obtain (E) o( 3 + 1 dV, 3) 

ar2 2 dk, a t ;  

(2.13) 
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In the last two terms the operations a/a& and 14/* acting on 4 do not commute, nor 
do they necessarily occur in the order shown. The correct order can be determined 
only if the structure of the non-linear term N ( u )  in (2.1) is known. With this proviso, 
(2.13) represents the desired MNS equation, which may be written in the form (1.3) with 

i (  a2D ) (E)-) 
q 2 = - 2  a(lA12)2 a@ 

and q3 equal to q4 or to one or other of the terms in q4. Note that we may use (2.7) 
to show that q l ,  q2 and q4 may also be written 

(2.14) 

(2.15) 

(2.16) 

3. The instability criterion 

Taniuti and Yajima (1969) derived the modulational instability criterion (1.2) for a 
carrier whose complex amplitude is governed by the NS equation (1.1); they used a 
method that involves real perturbations to a real amplitude and a real phase. This 
method was used by Kakutani and Michihiro (1983) to establish the modulational 
instability criterion (1.4) near the marginal state for a carrier whose complex amplitude 
is governed by the MNS equation (1.3). Using an alternative method based on that of 
Stuart and DiPrima (1978) which involves a complex perturbation to a complex 
amplitude, Dodd et a1 (1982) rederived (1.2). We use a generalisation of their method 
to rederive (1.4). 

Equation (1.3) has a plane wave solution of constant amplitude of the form 

4 = 4o exp[i(K& - R 4 1  (3.1) 

where 4o is a complex constant and K, R are real constants satisfying 

= PK2 + 41 l 4o I2  + q2140l4 - K4414oI2. 

The quantity K may be interpreted as a measure of the spread of wavenumbers about 
the dominant wavenumber ko in the carrier wave (2.5), as may be seen as follows. 
Inserting (3.1) into (2.5) we obtain (2.3) with A,,= ~ ‘ ” 4 ~ ,  k = ko+ E K  and 

(3.2) W = W O  + EKVg + &‘a 
where we have used & = E ( X  - V,?) and T~ = E’?.  Inserting (2.9), (2.10) and (2.14)-(2.16) 
into (3.2), and noting that IA12, we obtain 

w = w0 + (2) 0 ( k - ko) + I_ 2 (%) ak o( k - koI2 + (G) !AI2 + (&) 
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+ (&) ( k  - ko)lAl2 + O( E ’ )  
ak alA12 

which is just the Taylor series expansion about ( k o ,  0) of w = w ( k ,  IAI2). 

of (3 .1 )  of the form 
To investigate the modulational instability of the carrier we consider a perturbation 

(3.3) 

where B is complex. Inserting (3.3) into (1 .3 )  and linearising with respect to B we obtain 

4 = [ I +  B ( T ~ ,  51)140 exp[i(& - 0~~11 

aB a2B 
i + p (z + 2 i K  ”) 

a51 
a aB 

= (41 + 2q2/4oI2 - K 4 4 ) / d J o 1 2 ( B  + B*) +i93/4ol2 - ( B  + B*) +iq41#Jol2 - at1 a51 

(3.4) 

(3.5) 

where * denotes the complex conjugate. We seek a solution to (3.4) in the form 

B = B ,  exp[i( it, - &r2)] + B2 exp[-i( &, - W*T~)] 

where B1 , B2 are complex constants, is a real wavenumber and W may be complex. 
Substitution of (3 .5)  into (3.4) leads to the following linear homogeneous system for 
B, and B:: 

( a  - b - c)B, + ( d  - c)Bf = 0 

( d  + c)B, + ( a  + b + c)B: = 0 

where 

a = ~ - 2 K p i + ( q , + q , ) i l 4 ~ 1 ~  b = p i 2  

c = (41 + 24214Ol2 - K44)l4oI2 d = 43~14012. 
(The second of these equations is in fact the complex conjugate of the relation that 
arises directly.) The condition for a non-trivial solution gives the dispersion relation 

a’ = b2+ 2bc + d 2 .  

If the right-hand side is negative then the angular frequency 3 will be complex and 
the perturbations will grow. In this case 

pq, - r < -p2g2/214012 < o 

~=PK44-(4:+4P42)1~012/2 (3.6) 

o <  k 1 4 0 / ~ ~ ~ ~ - P 4 1 ~ 1 ” 2 / l P I  

where 

and wavenumbers i such that 

will be unstable. Thus the modulational instability criterion is (1.4) in agreement with 
equation (2.8) of Kakutani and Michihiro (1983). 

Unlike the condition (1.2) from the NS equation, (1.4) depends via r upon 1401, the 
amplitude of the carrier and K, the wavenumber spread. In turn these quantities will 
affect the behaviour of the system near the critical state given by p q ,  = 0 for which 
ko = k, .  Let us define the subcritical state as that for which pq, > 0 and the supercritical 
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state as that for which p q ,  < 0. From (1.4) we deduce that if r > 0 then all supercritical 
waves are unstable and that subcritical waves with r > p q ,  > 0 are unstable. On the 
other hand, if r < 0 then all subcritical waves are stable and supercritical waves with 
r < p q ,  < 0 are stable. Kakutani and Michihiro (1983) show that for a Stokes wave, 
K = 0 and r > 0 ,  so that a Stokes wave is in the former category. Johnson (1977), 
however, finds that r < O  and deduces that a Stokes wave is in the latter category. 

4. An example of the non-linear Schrodinger equation 

In this section and the next we apply the derivative expansion procedure to an equation 
that is particularly simple but physically relevant, namely 

au au au a3u 
- + a u - - + p u * - + y i = o  
a t  ax ax ax 

(4.1) 

where a, p, y are real constants. We assume that y # 0. With a # 0, p = 0, (4.1) is 
the K d v  equation and with a = 0, p # 0, it is the modified K d v  equation. 

Examples of the occurrence of (4.1) can be found in Kakutani and Yamasaki (1978) 
and Watanabe (1984). The former authors considered the propagation of long gravity 
waves on a stably stratified two-layer fluid. Near a critical thickness ratio the governing 
equation for the elevation of the interface in the slow mode is (4.1). Watanabe (1984) 
investigated the long wavelength approximation of the system of equations governing 
the propagation of ion acoustic waves in a plasma comprising electrons and positive 
and negative ions. Near a critical density of negative ions the electrostatic potential 
is governed by (4 . l ) t .  In subsequent work on the same physical system Saito er a1 
(1984) used the reductive perturbation method to derive from (4.1) the NS equation 
(1.1) for the complex wave amplitude. Implicit in their derivation was the assumption 
that ko was not near k , .  We shall recover the detailed form of q in this case before 
going on in P 5 to consider what happens when k, is near k, .  

Equation (4.1) can be written in the form (2.1) with 

a a3 L E - - +  y- 
a t  ax3 

and 

N (  U )  -”( ax 5 2 u 2 + ;  d ) .  

Introducing the extended set of independent variables defined in 0 2 we can write 

L =  Lo+ ELl + & 2 L 2 + 0 ( & 3 )  (4.2) 
where 

t There is an error in the coefficient corresponding to our a in equation (30) of Watanabe (1984) and in 
equation (6) of Saito er a/  (1984). Their coefficient should be divided by the small parameter labelled E in 
their notation. There is no such error in equation (5 .6 )  of Kakutani and Yamasaki (1978). 
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When the non-linearity is assumed to be of O ( E ) ,  U may be written 
3 

C E n U n ( e ,  7 1 , 5 1 , 7 2 7  t2)+0k4). 
n = l  

We may now write 

(4.3) 

N (  U )  = - E ~ N ~  - E 3  h’3 -t o( E4) (4.4) 

where N2 and N3 are given in the appendix. Substituting (4.2)-(4.4) into (2.1) and 
equating like powers of E we obtain the hierarchy of equations 

10 n = l  
(4.5) 

We may now solve these equations in turn, noting that for each n > 1 up to two 
non-secular conditions may be obtained by setting both the 6 independent terms and 
the coefficient of eie to zero on the right-hand side of (4.5), if they are not already 
identically zero. 

We assume the following quasi-monochromatic wave as the solution of the O ( E )  
equation in (4.5): 

u1 = 4(r1,  tl, r2, t2) e i e + c c  (4.6) 

where 
corresponding to (2.8), namely 

is a complex function and U,,  k, satisfy the linear dispersion relation 

w,+ yk;=O. (4.7) 
Here, and subsequently, ‘cc’ is used to mean ‘the complex conjugate of all the preceding 
terms’. We note that for n > 1 the homogeneous solutions to (4.5) may be included 
in (4.6) by suitably redefining 4, and that w, may be eliminated from the U, by means 
of (4.7). Also from (4.7) we have V, = -3 yki and p = -3 yk,. 

At O ( E ’ )  there is one non-secular condition (from the coefficient of e”), namely 

a4/aT1 = 0 

(cf (2.11)), and then 
(4.8) 

where cL2 is real and independent of 8. We assume that 4b2 depends on r1 and 
through 4 and 4* only and hence, in view of (4.8), that it is independent of 7,. 

obtain 
At O ( s 3 )  there are two non-secular conditions. From the 0 independent terms we 

(4.10) 

which may be integrated to give 

(4.11) 
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where v2 is an arbitrary real function of r2 and t2.  If we assume that U = 0 in the 
unperturbed state, i.e. when 4 = 0 so that there is no wave, then, following Kakutani 
and Michihiro (1983) ,  we may set v2 = 0. The other non-secular condition now gives 
the NS equation ( 1 . 1 )  with 

The modulational instability criterion ( 1 . 2 )  is 

(4 .12)  

(4 .13)  

Clearly if p y s 0  (as in Kakutani and Yamasaki 1978) there is stability for all k,. 
However, if p y > O  (as in Watanabe 1984), (4 .13)  may be written k,> k , ,  where 
k,  = ( a 2 / 6 p  y)"'. In the next section we shall assume that P y  > 0 and investigate the 
behaviour of the system when k, is near k , .  

5. Derivation of the modified non-linear Schrodinger equation 

Following Kakutani and Michihiro (1983)  we intensify the non-linear effects by writing 

so that 

n = l  

where the N ,  are given in the appendix. Substituting (4 .2) ,  ( 5 . 1 )  and ( 5 . 2 )  into ( 2 . 1 )  
and equating like powers of E we obtain the hierarchy of equations 

{-Nn n = 1 , 2  
o(En/z): Lou, = 

- 1 Ljun-2j - N ,  n = 3 , 4 , 5 , 6  
j = l  

( 5 . 3 )  

where 

We may solve these equations in turn and obtain non-secular conditions in the same 
way as for the hierarchy ( 4 . 5 ) .  

At O ( E ' / ~ )  U ,  is given by ( 4 . 6 ) .  At O ( E )  there are no non-secular conditions and 
u2 is given by ( 4 . 9 ) .  Again we assume that & is independent of 7,. At O( E ~ ' ~ )  there 
is one non-secular condition (from the coefficient of e"), namely 

and then 

u3=- ( - + p  ) 43e3i' +CC+*, 
24yki  2 y k i  

( 5 . 4 )  

where +b3 is real and independent of 6. 
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At O(E’ )  there are two non-secular conditions. From the coefficient of eie we find 
that I,b, = 0. The other condition is just (4.10). This may be integrated to give the 
expression (4.11) for I,b2, where we have used the fact that 1412 is independent of r l ,  
as can be shown by combining (5.4) with its complex conjugate. As before we set 
v 2 = 0 .  Insertion of (4.11) into (5.4) gives 

( 5 . 5  

where q is given by (4.12). I f  we assume that Ak = ko-  k, is of O ( E )  then q = &ql 
where q1 is of 0(1) and is given approximately by 

Hence at O ( E , / ~ ) ,  (5.5) becomes 

a 4 / a T l  = 0 (5.7) 

(cf (4.8)) and the right-hand side of ( 5 . 5 )  is shifted to the corresponding non-secular 
condition at O ( E ~ / ~ ) .  Now the solution at O(E’ )  is 

where +4 is real and independent of 0. We assume that +4 is independent of rl.  
At O ( E ~ / ~ )  there is one non-secular condition (from the coefficient of e”), namely 

where 

It is not necessary to solve for u s ,  but merely to observe that it involves 0 independent 
terms and terms in e*3is and e*sie. 

At O ( E ~ )  the non-secular condition from the 0 independent terms gives 

From ( 5 . 8 )  and its complex conjugate it is easily shown that 

(5.9) 

(5.10) 

Elimination of the r2 derivative between (5.9) and (5.10) and an integration with respect 
to t1 gives 
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where v4 is an arbitrary real function of r2 and t2 that we set to zero just as we set 
v2 = 0 in (4.1 1 )  and 

Substitution of (5.11) into (5.8) now gives the desired MNS equation ( 1 . 3 )  with q1 given 
by ( 5 . 6 )  and qi = mi + ni ( i  = 2 , 3 , 4 ) .  

As we are assuming that ko is near to k , ,  p ,  q 2 ,  q3 and q4 may be approximated by 
their values at k,  = k, ,  namely 

p = - 3 y k ,  9 2  = 2 P 2 / 3 Y k  q 3  = 2P q 4  = - 2 p .  

Using these values, we find from ( 3 . 6 )  that r = 6 p y k C R ,  where R = ~ + p 1 4 ~ 1 ~ / 3 y k , .  
The modulational instability criterion ( 1 . 4 )  may now be written 

ko> k , -  E R  

which, as expected, is a small correction to (4 .13)  written in the form ko> k, .  The 
conclusions reached in P 3 may now be stated for the particular system governed by 
( 4 . 1 ) .  As we are assuming that P y  > 0, r > 0 implies R > 0, and then those subcritical 
waves with k,  - E R  < ko < k,  are unstable. On the other hand, if r < 0, so that R < 0, 
then those supercritical waves with k,  < ko < k,  - E R  are stable. 

6. Concluding remarks 

In 0 2 we showed that the MNS equation governs the modulations near marginal 
modulational instability of wavelike solutions to the system ( 2 . 1 ) ,  and in 9 0  4 and 5 a 
physically relevant example af such a system was considered. However, many purely 
dispersive physical systems are described by the more general class of quasi-linear 
partial differential equations 

au au 
a t  ax 

A( U)-+ B (  U )  -+ C( U)=O ( 6 . 1 )  

where U and C are n-component column vectors and A, B are n x n matrices. Inoue 
and Matsumoto (1974)  have shown that, under certain restrictions, the modulations 
of wavelike solutions to ( 6 . 1 )  away from marginal modulational instability are governed 
by the NS equation. We can show that, under certain restrictions, the modulations 
near marginal modulational instability are governed by the MNS equation. We hope 
to report this work in due course. 

Kakutani and Michihiro (1983)  considered a gravity water wave system which is 
not of the form (2 .1)  or ( 6 . 1 ) .  In that case the calculation of the coefficients q , ,  q2,  
q3 and q4 that are needed for the instability criterion ( 1 . 4 )  was formidable. It is 
anticipated that this will also be so for any particular example of (6.1). We have found 
that this is the case for ion acoustic waves in a plasma and we hope to report these 
results shortly. 
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Appendix 

The N,, in (4.4) are given by 

The N,, in (5 .2 )  are given by 

NI = 0  

CY ( u1 u4 + ~ 2 ~ 3 )  + P ( 

P 2uZu4)  +-(U: + 3 U:U~ + 6 u I  ~ 2 ~ 3 )  ae  2 3 

ae  
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